208 research outputs found

    Overlapping memory replay during sleep builds cognitive schemata

    Get PDF
    Sleep enhances integration across multiple stimuli, abstraction of general rules, insight into hidden solutions and false memory formation. Newly learned information is better assimilated if compatible with an existing cognitive framework or schema. This article proposes a mechanism by which the reactivation of newly learned memories during sleep could actively underpin both schema formation and the addition of new knowledge to existing schemata. Under this model, the overlapping replay of related memories selectively strengthens shared elements. Repeated reactivation of memories in different combinations progressively builds schematic representations of the relationships between stimuli. We argue that this selective strengthening forms the basis of cognitive abstraction, and explain how it facilitates insight and false memory formation

    Schema-conformant memories are preferentially consolidated during REM sleep

    Get PDF
    Memory consolidation is most commonly described by the standard model, which proposes an initial binding role for the hippocampus which diminishes over time as intracortical connections are strengthened. Recent evidence suggests that slow wave sleep (SWS) plays an essential role in this process. Existing animal and human studies have suggested that memories which fit tightly into an existing knowledge framework or schema might use an alternative consolidation route in which the medial prefrontal cortex takes on the binding role. In this study we sought to investigate the role of sleep in this process using a novel melodic memory task. Participants were asked to remember 32 melodies, half of which conformed to a tonal schema present in all enculturated listeners, and half of which did not fit with this schema. After a 24-h consolidation interval, participants were asked to remember a further 32 melodies, before being given a recognition test in which melodies from both sessions were presented alongside some previously unheard foils. Participants remembered schema-conformant melodies better than non-conformant ones. This was much more strongly the case for consolidated melodies, suggesting that consolidation over a 24-h period preferentially consolidated schema-conformant items. Overnight sleep was monitored between the sessions, and the extent of the consolidation benefit for schema-conformant items was associated with both the amount of REM sleep obtained and EEG theta power in frontal and central regions during REM sleep. Overall our data suggest that REM sleep plays a crucial role in the rapid consolidation of schema-conformant items. This finding is consistent with previous results from animal studies and the SLIMM model of Van Kesteren, Ruiter, FernΓ‘ndez, and Henson (2012), and suggest that REM sleep, rather than SWS, may be involved in an alternative pathway of consolidation for schema-conformant memories. Copyright Β© 2015. Published by Elsevier Inc

    Higher order intentionality tasks are cognitively more demanding

    Get PDF
    A central assumption that underpins much of the discussion of the role played by social cognition in brain evolution is that social cognition is unusually cognitively demanding. This assumption has never been tested. Here, we use a task in which participants read stories and then answered questions about the stories in a behavioural experiment (39 participants) and an fMRI experiment (17 participants) to show that mentalising requires more time for responses than factual memory of a matched complexity and also that higher orders of mentalising are disproportionately more demanding and require the recruitment of more neurons in brain regions known to be associated with theory of mind, including insula, posterior STS, temporal pole and cerebellum. These results have significant implications both for models of brain function and for models of brain evolution

    Sleep spindle density predicts the effect of prior knowledge on memory consolidation

    Get PDF
    Information that relates to a prior knowledge schema is remembered better and consolidates more rapidly than information that does not. Another factor that influences memory consolidation is sleep and growing evidence suggests that sleep-related processing is important for integration with existing knowledge. Here, we perform an examination of how sleep-related mechanisms interact with schema-dependent memory advantage. Participants first established a schema over 2 weeks. Next, they encoded new facts, which were either related to the schema or completely unrelated. After a 24 h retention interval, including a night of sleep, which we monitored with polysomnography, participants encoded a second set of facts. Finally, memory for all facts was tested in a functional magnetic resonance imaging scanner. Behaviorally, sleep spindle density predicted an increase of the schema benefit to memory across the retention interval. Higher spindle densities were associated with reduced decay of schema-related memories. Functionally, spindle density predicted increased disengagement of the hippocampus across 24 h for schema-related memories only. Together, these results suggest that sleep spindle activity is associated with the effect of prior knowledge on memory consolidation. SIGNIFICANCE STATEMENT Episodic memories are gradually assimilated into long-term memory and this process is strongly influenced by sleep. The consolidation of new information is also influenced by its relationship to existing knowledge structures, or schemas, but the role of sleep in such schema-related consolidation is unknown. We show that sleep spindle density predicts the extent to which schemas influence the consolidation of related facts. This is the first evidence that sleep is associated with the interaction between prior knowledge and long-term memory formation

    The role of slow-wave sleep rhythms in the corticalhippocampal loop for memory consolidation

    Get PDF
    Memory consolidation during slow-wave sleep is supported by slow oscillations (SOs), spindles, and hippocampal ripples. Recent evidence in both rodents and humans has demonstrated that consolidation is mediated by a bidirectional hippocampal-cortical loop. Here, we discuss oscillatory mechanisms by which the interaction of these non-REM oscillations may provide an appropriate neural framework for both the TOP-DOWN and the BOTTOM-UP processes in this loop. We also discuss how non-REM oscillations promote cortical plasticity for new memories, while simultaneously downregulating the representations of information in hippocampal networks. Finally, we point out that not all individual instances of non-REM oscillations play a role in the consolidation process. Instead, the capacity of these rhythms to support memory is determined by a triple SOspindle- ripple coupling provided by thalamocortical dynamics. Importantly, large, spatially synchronised SOs promote thalamic downstates, and spindles, boosting the probability of this triple coupling

    Sleeping through brain excitation and inhibition

    Get PDF

    Cued memory reactivation during slow-wave sleep promotes explicit knowledge of a motor sequence

    Get PDF
    Memories are gradually consolidated after initial encoding, and this can sometimes lead to a transition from implicit to explicit knowledge. The exact physiological processes underlying this reorganization remain unclear. Here, we used a serial reaction time task to determine whether targeted memory reactivation (TMR) of specific memory traces during slow-wave sleep promotes the emergence of explicit knowledge. Human participants learned two 12-item sequences of button presses (A and B). These differed in both cue order and in the auditory tones associated with each of the four fingers (one sequence had four higher-pitched tones). Subsequent overnight sleep was monitored, and the tones associated with one learned sequence were replayed during slow-wave sleep. After waking, participants demonstrated greater explicit knowledge (p = 0.005) and more improved procedural skill (p = 0.04) for the cued sequence relative to the uncued sequence. Furthermore, fast spindles (13.5–15 Hz) at task-related motor regions predicted overnight enhancement in procedural skill (r = 0.71, p = 0.01). Auditory cues had no effect on post-sleep memory performance in a control group who received TMR before sleep. These findings suggest that TMR during sleep can alter memory representations and promote the emergence of explicit knowledge, supporting the notion that reactivation during sleep is a key mechanism in this process

    Examining the optimal timing for closed loop auditory stimulation of slow wave sleep in young and older adults

    Get PDF
    Study Objectives Closed loop auditory stimulation (CLAS) is a method for enhancing slow oscillations (SOs) through the presentation of auditory clicks during sleep. CLAS boosts SOs amplitude and sleep spindle power, but the optimal timing for click delivery remains unclear. Here, we determine the optimal time to present auditory clicks to maximise the enhancement of SO amplitude and spindle likelihood. Methods We examined the main factors predicting SO amplitude and sleep spindles in a dataset of twenty-one young and seventeen older subjects. The participants received CLAS during slow-wave-sleep in two experimental conditions: sham and auditory stimulation. Post-stimulus SOs and spindles were evaluated according to the click-phase on the SOs and compared between and within conditions. Results We revealed that auditory clicks applied anywhere on the positive portion of the SO increased SO amplitudes and spindle likelihood, although the interval of opportunity was shorter in the older group. For both groups, analyses showed that the optimal timing for click delivery is close to the SO peak phase. Click-phase on the SO wave was the main factor determining the impact of auditory stimulation on spindle likelihood for young subjects, whereas for older participants the temporal lag since the last spindle was a better predictor of spindle likelihood. Conclusions Our data suggest that closed-loop auditory stimulation can more effectively boost SOs during specific phase windows, and these differ between young and older participants. It is possible that this is due to the fluctuation of sensory inputs modulated by the thalamocortical networks during the SO

    The assimilation of novel information into schemata and its efficient consolidation

    Get PDF
    Schemata enhance memory formation for related novel information. This is true even when this information is neutral with respect to schema-driven expectations. This assimilation of novel information into schemata has been attributed to more effective organizational processing that leads to more referential connections with the activated associative schema network. Animal data suggest that systems consolidation of novel assimilated information is also accelerated. In the current study, we used both multivariate and univariate fMRI analyses to provide further support for these proposals and to elucidate the neural underpinning of these processes. 28 Participants (5 male) over-learned fictitious schemata for seven weeks and then encoded novel related and control facts in the scanner. These facts were retrieved both immediately and two weeks later, also in the scanner. Our results conceptually replicate previous findings with respect to enhanced vmPFC-hippocampus coupling during encoding of novel related information and point to a prior knowledge-effect that is distinct from situations where novel information is experienced as congruent or incongruent with a schema. Moreover, the combination of both multi- and univariate results further specified the proposed contributions of the vmPFC, precuneus and angular gyrus-network to the more efficient encoding of schema-related information. In addition, our data provide further evidence for more efficient systems consolidation of such novel schema-related and potentially assimilated information
    • …
    corecore